
Page - 1 -

What is the Return on Investment (ROI) of Agile Methods?
by David F. Rico

Abstract

The purpose of this paper is to investigate the
return-on-investment (ROI) of agile methods. Agile
methods are new product development processes for
creating software-based goods and services. Agile
methods are a lightweight alternative to traditional
methods based on sequential product development
processes created over the last four or five decades.
The use of traditional methods is theorized to result
in higher quality software products because of well-
documented customer requirements and products that
exhibit fewer problems over their life cycle. Agile
methods on the other hand are used to achieve higher
customer satisfaction and product quality through
rapid implementation and early market testing. The
ROI of agile methods is yet to be fully explored
because of their newness, while the ROI of traditional
methods is well-understood. Therefore, the purpose
of this paper is to investigate and summarize the
literature on the ROI of agile methods. These results
show that the use of agile methods results in
increased cost-effectiveness, productivity, quality,
cycle-time reduction, and customer satisfaction
ranging from 10% to 100%.

1. Introduction

An agile method is a contemporary new product
development process for creating computer software
such as operating systems, middleware, applications,
and web-based technologies. A new product
development process is a streamlined management
and development methodology for quickly and
efficiently creating innovative goods and services.
New product development processes span the life
cycle of a novel technology from its inception,
concept, or idea-stage right on through its operations,
market, or end-user stage. Agile methods are
generally characterized by lightweight, informal, and
highly-adaptable new product development
processes. Agile methods are rooted in concept
testing, rapid prototyping, and early market feedback,
and are lightweight forms of overlapping, cross-
functional, simultaneous, integrated-product, time-
based, and concurrent development. Agile methods
are also rooted in chaos theory, systems theory,
systems thinking, systems dynamics, double-loop
learning, learning organizations, organizational
learning, and adaptable systems. Agile methods
evolved directly from their earlier traditional cousins.

2. Agile Methods

Agile methods are different from traditional
software development methods. Traditional methods
are also product development processes based on the
theory of sequentially building software goods and
services. Traditional methods are a sequential product
development process of systems planning, analysis,
architecture, design, development, and testing.
Traditional methods are based on rigidly defined
policies, processes, procedures, documentation, and
tools with rigid interfaces between them. Traditional
methods are based on the theory that a customer’s or
end-user’s requirements can be defined at the
beginning of the process, sequentially transformed
into a software product, and then delivered to the
customer when it is complete. A traditional method
may take years or even decades to cycle through its
process. Traditional methods generally fail to deliver
a product that satisfies its customer’s requirements.
Agile methods, on the other hand, may be better than
traditional methods because they may be used to
achieve customer satisfaction and software quality by
soliciting customer feedback on a series of rapid
product releases. Agile methods are based on four
broad processes of using iterative development,
customer feedback, small software development
teams, and flexible software technologies. Here are
some of the major forms of agile methods [14].

2.1 New Product Development Game

In 1986, two management scholars from the
School of International Corporate Strategy at
Hitotsubashi University in Tokyo, Japan, published a
approach called the “new product development
game” in the Harvard Business Review [28]. In their
article, they argued that Japanese “companies are
increasingly realizing that the old sequential
approach to developing new products simply will not
get the job done.” They cited the sport of Rugby as
the inspiration for the principles of their new product
development game—In particular, Rugby’s special
play called the Scrum, when the players interlock
themselves together as a tightly bound group to gain
possession of the ball. The new product development
game consisted of six major factors: (a) built-in
instability, (b) self organizing project teams, (c)
overlapping development phases, (d) multi-learning,
(e) subtle control, and (f) organizational transfer of
learning.

Page - 2 -

2.2 New Development Rhythm

In 1989, three managers from IBM in Rochester,
Minnesota, published an article on how IBM devised
a management approach called the “new
development rhythm,” to bring the AS/400 midrange
computer to market in only two years [27]. In their
article, they stated that “user involvement programs
yielded a product offering that met the user
requirements with a significantly reduced
development cycle.” The new development rhythm
consisted of six major factors: (a) modularized
software designs, (b) software reuse, (c) rigorous
software reviews and software testing, (d) iterative
development, (e) overlapped software releases, and
(f) early user involvement and feedback.

2.3 Crystal Methods

In 1991, a software manager with IBM was asked
to create an approach for managing the development
of object oriented systems called “crystal methods”
 [5]. Crystal methods were piloted on a “$15 million
firm, fixed-price project consisting of 45 people.”
Crystal methods are a “family of methods with a
common genetic code, one that emphasizes frequent
delivery, close communication, and reflective
improvement.” The seven properties of crystal
methods are: (a) frequent delivery; (b) reflective
improvement; (c) close communication; (d) personal
safety; (e) focus; (f) easy access to expert users; and
(g) a technical environment with testing,
configuration management, and frequent integration.

2.4 Scrum

In 1993, Jeff Sutherland of the Easel Corporation
adapted the principles from the “new product
development game” [28] to the field of computer
programming management, explicitly calling it
“scrum” [26]. In particular, scrum assumes that the
“systems development process is an unpredictable
and complicated process that can only be roughly
described as an overall progression.” Furthermore,
scrum’s creators believed “the stated philosophy that
systems development is a well understood approach
that can be planned, estimated, and successfully
completed has proven incorrect in practice.”
Therefore, scrum’s creators set out to define a
process as a “loose set of activities that combines
known, workable tools and techniques with the best
that a development team can devise to build
systems.” Today, scrum is composed of three broad
phases: (a) pre-sprint planning, (b) sprint, and (c)
post-sprint meeting.

2.5 Dynamic Systems Development

In 1993, 16 academic and industry organizations
in the United Kingdom banded together to create a
management approach for commercial software
called the “dynamic systems development method”
or simply DSDM [16]. Their goal was to “develop
and continuously evolve a public domain method for
rapid application development” in an era dominated
by proprietary methods. Initially, DSDM emphasized
three success factors: (a) “the end user community
must have a committed senior staff that allows
developers easy access to end users,” (b) “the
development team must be stable and have well
established skills,” and (c) “the application area must
be commercial with flexible initial requirements and
a clearly defined user group.” These were expanded
to functionality versus quality, product versus
process, configuration management, business
objectives focus, testing, risk management, and
flexible requirements. DSDM consists of five major
stages: (a) feasibility study, (b) business study, (c)
functional model iteration, (d) design and build
iteration, and (e) implementation.

2.6 Synch-n-Stabilize

In 1995, two management scholars from MIT’s
Sloan School of Management published a textbook
on how Microsoft managed the development of
software for personal computers, dubbed the “synch-
n-stabilize” approach [6]. Experts on software
management approaches for the mainframe market,
their two year case study from 1993 to 1995 was
more of a grounded theory or emergent research
design. At one point in their textbook, they stated that
“during this initial research, it became clear why
Microsoft was able to remain on top in its industry
while most of its contemporaries from the 1970s had
disappeared.” Synch-n-stabilize consisted of six
major factors: (a) parallel programming and testing,
(b) flexible software requirements, (c) daily
operational builds, (d) iterative development, (e)
early customer feedback, and (f) use of small
programming teams. This influential study was based
on principles from [27].

2.7 Feature Driven Development

In 1997, three software managers and five
software developers created a software development
approach called “feature driven development” to help
save a failed project for an international bank in
Singapore [17]. In their textbook, they stated that
“the bank had already made one attempt at the project

Page - 3 -

and failed, and the project had inherited a skeptical
user community, wary upper management, and a
demoralized development team.” Feature driven
development consists of five phases: (a) develop an
overall model, (b) build a features list, (c) plan by
feature, (d) design by feature, and (e) build by
feature. Feature driven development also consists of
other best practices in software management and
development such as domain object modeling,
developing by feature, individual class ownership,
feature teams, inspections, regular builds,
configuration management, and reporting and
visibility of results.

2.8 Open Source Software Development

The term “open source software development” or
OSS was coined in 1997, though the practice of open
source software started in 1970 [4]. Simply put, open
source software is a “set of computer instructions that
may be used, copied, modified, and distributed by
anyone, anywhere, and for any purpose whatsoever”
 [12]. Another definition stated “open source software
is labeled with free source, fast evolution, and
extensive user collaboration” [31]. One study
identified eight factors of open source software: (a) is
parallel rather than linear; (b) involves large
communities of globally distributed developers; (c)
utilizes truly independent peer review; (d) provides
prompt feedback to user and developer contributions;
(e) includes the participation of highly talented
developers; (f) includes increased user involvement;
(g) makes use of extremely rapid release schedules;
and (h) produces evolutionary designs [9]. One
author wryly mused, “Internet time refers to
something much faster, revolutionary, and more
basic—It describes the process of developing open
source software” [18].

2.9 Judo Strategy

In 1998, two management scholars from both the
Harvard Business School and MIT’s Sloan School of
Management published a textbook on how Netscape
managed the development of software for the
Internet, dubbed the “judo strategy” [7]. The more
notable characteristics of Netscape’s judo strategy
included: (a) design products with modularized
architectures; (b) use parallel development; (c)
rapidly adapt to changing market priorities; (d) apply
as much rigorous testing as possible; and (e) use beta
testing and open source strategies to solicit early
market feedback on features, capabilities, quality, and
architecture.

2.10 Internet Time

In 1998, a management scholar from the Harvard
Business School conducted a study on how U.S.
firms manage the development of websites, referring
to his approach as “Internet time” [15]. His study
states that “constructs that support a more flexible
development process are associated with better
performing projects.” He surveyed 29 projects from
15 Internet firms such as Microsoft, Netscape,
Yahoo, Intuit, and Altavista. He set out to test the
theory that website quality was associated with three
major factors: (a) greater investments in architectural
design, (b) early market feedback, and (c) greater
amounts of generational experience.

2.11 Extreme Programming

In 1998, 20 software managers working for the
Chrysler Corporation published an article on how
they devised a management approached called
“extreme programming” or XP to turn around a
failing software project that would provide payroll
services for 86,000 Chrysler employees [3]. Extreme
programming consisted of 13 factors: (a) planning
game, (b) small releases, (c) metaphor, (d) simple
design, (e) tests, (f) refactoring, (g) pair
programming, (h) continuous integration, (i)
collective ownership, (j) onsite customer, (k) 40 hour
workweek, (l) open workspace, and (m) just rules.

3. ROI of Agile Methods

The purpose of ROI studies is to illustrate the
business-value of using agile methods. There is the
notion of soft-side ROI and hard-side ROI. Soft-side
ROI refers to qualitative benefits such as improved
morale or attitudes towards agile methods. While this
is a legitimate form of ROI, this paper examines
hard-side ROI. Hard-side ROI refers to the
quantitative benefits of agile methods, often
expressed in economic terms. For instance, if the use
of agile methods takes half the time of traditional
methods, then there is a direct economic benefit to
increased productivity. That is, using agile methods
may cost half as much as traditional methods. Below
are only 11 major studies on the ROI of agile
methods. There are many studies of agile methods
ROI not mentioned here. However, these studies only
looked at one or two techniques of agile methods
such as pair programming. It is the intent of this
paper to investigate the ROI of using agile methods
in their entirety. In other words, what is the ROI of
iterative development, early customer feedback,
small teams, and flexible software technology?

Page - 4 -

3.1 Harvard Business School

In 1998, two management scholars from the
Harvard Business School conducted a survey of 391
respondents to test the effects of flexible versus
inflexible product technologies [29]. What they found
was that projects using inflexible product
technologies required over two times as much
engineering effort as flexible product technologies
(e.g., 17.94 vs. 8.15 months).

3.2 Harvard Business School

In 1998, a management scholar from the Harvard
Business School conducted a survey of 29 projects
from 15 U.S. Internet firms to test the effects of
flexible software development management
approaches on website quality [15]. What he found
was that flexible product architectures and customer
feedback on early beta releases were correlated to
higher levels of website quality.

3.3 Boston College Carroll School of Management

In 1999, two management scholars from Boston
College’s Carroll School of Management conducted a
case study of 28 software projects to determine the
effects of iterative development on project success
 [10]. What they found was that software projects that
use iterative development deliver working software
38% sooner, complete their projects twice as fast, and
satisfy over twice as many software requirements.

3.4 Reifer Consultants

In 2003, Reifer Consultants conducted a survey of
78 projects from 18 firms to determine the effects of
using agile methods to manage the development of
software [20]. What they found was that 14% to 25%
of respondents experienced productivity gains, 7% to
12% reported cost reductions, and 25% to 80%
reported time-to-market improvements.

3.5 Shine Technologies

In 2003, Shine Technologies conducted an
international survey of 131 respondents to determine
the effects of using agile methods to manage the
development of software [13]. What they found was
that 49% of the respondents experienced cost
reductions, 93% of the respondents experienced
productivity increases, 88% of the respondents
experienced quality increases, and 83% experienced
customer satisfaction improvements.

3.6 CIO Magazine

In 2004, CIO Magazine conducted a survey of 100
information technology executives with an average
annual budget of $270 million to determine the
effects of agile management on organizational
effectiveness [19]. What they found was that 28% of
respondents had been using agile management
methods since 2001, 85% of the respondents were
undergoing enterprise wide agile management
initiatives, 43% of the respondents were using agile
management to improve organizational growth and
market share, and 85% said agile management was a
core part of their organizational strategy.

3.7 Digital Focus

In 2006, Digital Focus conducted a survey of 136
respondents to determine the effects of using agile
methods to manage the development of software [8].
What they found was that 27% of the respondents
were adopting agile methods for a project, 23% of the
respondents were adopting agile methods company
wide, 51% of the respondents wanted to use agile
methods to speed up the development process, 51%
of the respondents said they lacked the skills
necessary to implement agile methods at the project
level, 62% of the respondents said they lacked the
skills necessary to implement agile methods at the
organization level, and 60% planned on teaching
themselves how to use agile methods.

3.8 Version One

In 2006, Version One conducted an international
survey of 722 respondents to determine the effects of
using agile methods to manage the development of
software [30]. What they found was that 86% of the
respondents reported time-to-market improvements,
87% of the respondents reported productivity
improvements, 86% of the respondents reported
quality improvements, 63% of the respondents
reported cost reductions, 92% of the respondents
reported the ability to manage changing priorities,
74% of the respondents reported improved morale,
72% of the respondents reported risk reductions, 66%
of the respondents reported satisfaction of business
goals, and 40% were using the scrum method.

3.9 AmbySoft 2006

In 2006, Ambysoft conducted an international
survey of 4,232 respondents to determine the effects
of using agile methods to manage the development of
software [1]. What they found was that 41% of

Page - 5 -

organizations were using agile methods; 65% used
more than one type of agile method; 44% reported
improvements in productivity, quality, and cost
reductions; and 38% reported improvements in
customer satisfaction.

3.10 AmbySoft 2007

In 2007, Ambysoft conducted another
international survey of 781 respondents to further
determine the effects of using agile methods to
manage the development of software [2]. What they
found was that 69% of organizations had adopted
agile methods, 89% of agile projects had a success
rate of 50% or greater, and 99% of organizations are
now using iterative development.

3.11 UMUC

In 2007, a student at the University of Maryland
University College (UMUC) conducted a survey of
250 respondents to determine the effects of using
agile methods on website quality [21], [22], [24],
 [25]. What he found was that: (a) 70% of all
developers are using many if not all aspects of agile
methods; (b) 79% of all developers using agile
methods have more than 10 years of experience; (c)
83% of all developers using agile methods are from
small to medium-sized firms; (d) 26% of all
developers using agile methods have had
improvements of 50% or greater; (e) developers
using all aspects of agile methods produced better e-
commerce websites.

Year Source Findings Responses

1998 Harvard
(Thomke et al., 1998)

50% reduction in engineering effort
55% improvement in time to market
925% improvement in number of changes allowed

391

1998 Harvard
(MacCormack, 1998)

48% productivity increase over traditional methods
38% higher quality associated with more design effort
50% higher quality associated with iterative development

29

1999 Boston College
(Fichman et al., 1999)

38% reduction in time to produce working software
50% time to market improvement
50% more capabilities delivered to customers

28

2003 Reifer Consultants
(Reifer, 2003)

20% reported productivity gains
10% reported cost reductions
53% reported time-to-market improvements

78

2003 Shine Technologies
(Johnson, 2003)

49% experienced cost reductions
93% experienced productivity increases
88% experienced customer satisfaction improvements

131

2004 CIO Magazine
(Prewitt, 2004)

28% had been using agile methods since 2001
85% initiated enterprise-wide agile methods initiatives
43% used agile methods to improve growth and marketshare

100

2006 Digital Focus
(Digital Focus, 2006)

27% of software projects used agile methods
23% had enterprise-wide agile methods initiatives
51% used agile methods to speed-up development

136

2006 Version One
(Version One, 2006)

86% reported time-to-market improvements
87% reported productivity improvements
92% reported ability to dynamically change priorities

722

2006 AmbySoft
(Ambler, 2006)

41% of organizations used agile methods
44% reported improved productivity, quality, and costs
38% reported improvements in customer satisfaction levels

4,232

2007 AmbySoft
(Ambler, 2007)

69% of organizations had adopted agile methods
89% of agile projects had a success rate of 50% or greater
99% of organizations are now using iterative development

781

2007 UMUC
(Rico, 2007)

70% of developers using most aspects of agile methods
26% of developers had improvements of 50% or greater
Agile methods are linked to improved website quality

250

Page - 6 -

4. Conclusion

The purpose of this article was to examine and
identify the ROI of agile methods. More specifically,
its purpose was to identify the ROI of using agile
methods in their entirety, not just some of the tools
and techniques of agile methods like pair
programming. This paper looks at the ROI of using
all of the major factors of agile methods including
iterative development, early customer feedback,
small software development teams, and flexible
software technologies that enhance productivity. The
studies examined here identify many hard-side ROI
benefits for using agile methods. The benefits of
using agile methods range from 10% to 100% for
increased cost-effectiveness, productivity, quality,
cycle-time reduction, and customer satisfaction. The
use of agile methods as a new product development
approach does result in increased ROI. This begins to
dispel the notion that agile methods result in lower
ROI than traditional methods. However, it is
important to note that these are only early studies and
further study of the ROI of agile methods is
necessary to make better conclusions. Promising new
studies are starting to emerge based on more
sophisticated approaches to measuring the ROI and
more extensive historical data [11], [23].

5. References

[1] Ambler, S. W. (2006). Agile adoption rate survey:
March 2006. Retrieved September 17, 2006, from
http://www.ambysoft.com/downloads/surveys/Agile
AdoptionRates.ppt

[2] Ambler, S. W. (2007). Agile adoption survey:
March 2007. Retrieved July 23, 2007, from
http://www.ambysoft.com/downloads/surveys/Agile
Adoption2007.ppt

[3] Anderson, A., Beattie, R., Beck, K., Bryant, D.,
DeArment, M., Fowler, M., et al. (1998). Chrysler
goes to extremes. Distributed Computing Magazine,
1(10), 24-28.

[4] Bretthauer, D. (2002). Open source software: A
history. Information Technology and Libraries, 21(1),
3-10.

[5] Cockburn, A. (2002). Agile software
development. Boston, MA: Addison Wesley.

[6] Cusumano, M. A., & Selby, R. W. (1995).
Microsoft secrets: How the world’s most powerful

software company creates technology, shapes
markets, and manages people. New York, NY: The
Free Press.

[7] Cusumano, M. A., & Yoffie, D. B. (1998).
Competing on internet time: Lessons from netscape
and its battle with microsoft. New York, NY: The
Free Press.

[8] Digital Focus. (2006). Agile 2006 survey: Results
and analysis. Herndon, VA: Author.

[9] Feller, J., & Fitzgerald, B. (2002). Understanding
open source software development. London,
England: Pearson Education.

[10] Fichman, R. G., & Moses, S. A. (1999). An
incremental process for software implementation.
Sloan Management Review, 40(2), 39-52.

[11] Fichman, R. G., Keil, M., & Tiwana, A. (2005).
Beyond valuation: Options thinking in IT project
management. California Management Review, 40(2),
74-96.

[12] Fink, M. (2003). The business and economics of
linux and open source. Upper Saddle River, NJ:
Prentice Hall.

[13] Johnson, M. (2003). Agile methodologies:
Survey results. Victoria, Australia: Shine
Technologies.

[14] Larman, C. (2004). Agile and iterative
development: A manager’s guide. Boston, MA:
Pearson Education.

[15] MacCormack, A. (1998). Managing adaptation:
An empirical study of product development in rapidly
changing environments. Unpublished doctoral
dissertation, Harvard University, Boston, MA, United
States.

[16] Millington, D., & Stapleton, J. (1995).
Developing a RAD standard. IEEE Software, 12(5),
54-56.

[17] Palmer, S. R., & Felsing, J. M. (2002). A
practical guide to feature driven development. Upper
Saddle River, NJ: Prentice Hall.

[18] Pavlicek, R. C. (2000). Embracing insanity:
Open source software development. Indianapolis, IN:
Sams Publishing.

Page - 7 -

[19] Prewitt, E. (2004). The agile 100. CIO
Magazine, 17(21), 4-7.

[20] Reifer, D. J. (2003). The business case for agile
methods/extreme programming (XP). Proceedings of
the Seventh Annual PSM Users Group Conference,
Keystone, Colorado, USA, 1-30.

[21] Rico, D. F. (2007). Effects of agile methods on
electronic commerce: Do they improve website
quality? Proceedings of the 40th Annual Hawaii
International Conference on System Sciences (HICSS
2007), Waikaloa, Big Island, Hawaii.

[22] Rico, D. F. (2007). Effects of agile methods on
website quality for electronic commerce.
Unpublished doctoral dissertation, University of
Maryland University College, Adelphi, MD, United
States (http://davidfrico.com/rico07.pdf).

[23] Rico, D. F. (2007). ROI of technology readiness
assessments using real options: An analysis of gao
data from 62 u.s. dod programs. Retrieved November
28, 2007, from http://davidfrico.com/rico07o.pdf

[24] Rico, D. F. (2008). Effects of agile methods
website quality for electronic commerce. Proceedings
of the 41st Annual Hawaii International Conference
on System Sciences (HICSS 2008), Waikaloa, Big
Island, Hawaii.

[25] Rico, D. F., Sayani, H. H., Stewart, J. J., &
Field, R. F. (2007). A model for measuring agile
methods and website quality. TickIT International,
9(3), 3-15.

[26] Schwaber, K. (1995). Scrum development
process. Proceedings of the 10th Annual ACM
Conference on Object Oriented Programming
Systems, Languages, and Applications (OOPSLA
1995), Austin, Texas, USA, 117-134.

[27] Sulack, R. A., Lindner, R. J., & Dietz, D. N.
(1989). A new development rhythm for AS/400
software. IBM Systems Journal, 28(3), 386-406.

[28] Takeuchi, H., & Nonaka, I. (1986). The new
product development game. Harvard Business
Review, 64(1), 137-146.

[29] Thomke, S., & Reinertsen, D. (1998). Agile
product development: Managing development
flexibility in uncertain environments. California
Management Review, 41(1), 8-30.

[30] Version One. (2006). The state of agile
development. Apharetta, GA: Author.

[31] Zhao, L., & Deek, F. P. (2004). User
collaboration in open source software development.
Electronic Markets, 14(2), 89-103.

Page - 1 -

WHAT IS THE ROI OF AGILE VS. TRADITIONAL METHODS?
An analysis of XP, TDD, Pair Programming, and Scrum (Using Real Options)

Dr. David F. Rico, PMP, CSM

Abstract

Little is known about the costs and benefits of Agile Methods since their popularization in 1999,
though 67% of projects use them and 75 books and 100s of papers have been written about them.
The purpose of this article is to analyze the costs and benefits reported in studies of new product
development approaches such as Agile Methods as compared to those of Traditional Methods.
Over 300 articles on Agile Methods were examined; cost, schedule, productivity, quality, and
customer satisfaction data were found in 69 studies; and ROI data were identified in 29 studies.
Agile Methods ROI was four times more than expensive Traditional Methods, two times less
than inexpensive ones, and the best Agile and Traditional Methods had equal ROI (see Figure 1).
However, it may not be proper to compare Traditional Methods optimized for productivity and
quality to Agile Methods optimized for customer satisfaction, project success, and risk reduction.

Introduction

The U.S. and worldwide information technology industry continues to grow at an amazing rate.
In 2006, software industry revenues reached $393 billion, and business-to-consumer (B2C) and
business-to-business (B2B) electronic commerce revenue reached $220 billion and $2.7 trillion.
Likewise, the number of Internet websites now exceeds 136 million, the number of U.S. Internet
shoppers is in excess of 147 million, and the number of Internet users is greater than 1.3 billion. 1
Accordingly, information technology is the second leading contributor to the U.S. economy and
contributes to more than 50% of labor productivity growth in the top 10 industrialized nations.
Also in 2006, U.S. firms spent over $251 billion in information technology investments and the
U.S. Department of Defense used $447 billion to acquire information technology based systems.
This flurry of activity led to more than 6 million U.S. information technology jobs, 450,000
projects, 265,000 certified project managers, and 36,000 Scrum masters to help manage them.
Finally, 900,000 firms used ISO 9001 for quality management, 300,000 projects used Agile
Methods for software design, and 840 firms used CMMI® for process improvement in 2006.

4,133%

3,272%
2,826%

1,788%

871%

229% 173%
0%

500%
1,000%
1,500%
2,000%
2,500%
3,000%
3,500%
4,000%
4,500%

PSPsm Inspections TSPsm Agile SW-CMM® ISO 9001 CMMI®

Figure 1. Methods for Managing Information Technology Projects (with decreasing ROI from left to right)

® Personal Software Process (PSP), Team Software Process (TSP), Software-Capability Maturity Model (SW-CMM), and Capability Maturity

Model Integration (CMMI) are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University (CMU).

Page - 2 -

Agile Methods

Agile methods are lightweight software design processes based on small teams using flexible
technologies to iteratively improve software using customer feedback to converge on solutions.
Kent Beck is credited with creating Agile Methods by devising Extreme Programming in 1998,
though XP was just one in a long line of hundreds of software methods dating back to 1968. 2
According to the Agile Manifesto, the major factors of Agile Methods are: (1) early customer
involvement, (2) iterative development, (3) self-organizing teams, and (4) adaptation to change.
Early customer involvement was known as top-level commitment, management involvement,
user involvement, user participation, lead users, and participatory design from 1950 to 1980.
Iterative development was known as concept testing, beta testing, and probing in marketing and
iterative, incremental, evolutionary, spiral, and time-boxed development in the software field.
Self organizing teams were known as self organizing dynamic teams, self determined groups,
small decision-making groups, task oriented groups, and autonomous groups up to the 1960s.
Adaptability came from organismic biology, cybernetics, systems theory, systems dynamics,
double loop learning, adaptive organizations, learning organizations, and systems thinking.

Thomas Edison’s success is attributed to the use of agile, new product development processes,
along with Lockheed’s SR-71, NASA’s Apollo program, and the Jet Propulsion Laboratory. 3
But, direct antecedents of Agile Methods include Joint Application Design, Rapid Application
Development, Participatory Design, Synch-and-Stabilize, Judo Strategy, and Internet Time. 4
Agile methods include Extreme Programming, Scrum, Feature Driven Development, Dynamic
Systems Development, Lean Development, Crystal Methods, and Adaptive Software Design. 5
By 2003, 66% of the world’s projects were using Agile Methods and 90% of those were using
Extreme Programming (XP), 6 although the number of projects using XP has declined to 23%. 7
The number of software projects using Scrum is increasing and it has caught the fancy of big
firms like Google, Yahoo, and Microsoft, and as many as 50,000 projects may be using Scrum.
The latest trend is to mix-and-match Scrum and XP to tap into practices like Pair Programming
(PP) and Test-Driven Development (TDD) to increase productivity and quality (see Figure 2). 8
Agile Methods have capabilities beyond Traditional Methods—That is, the ability to successfully
deliver results quickly and inexpensively on complex projects with ill-defined requirements.

Figure 2. Agile Methods and Practices (with often-reported costs and benefits)

Page - 3 -

Agile Methods Costs and Benefits

A primary goal of this study was to examine scholarly studies of Agile Methods and survey the
range of quantitative costs and benefits associated with the use of Agile Methods (see Table 1).
Data were compared to costs and benefits of Traditional Methods such as CMMI® (see Table 2). 9
Agile Methods emphasize teams, working software, customer collaboration, and responding to
change, while Traditional Methods focus on contracts, plans, processes, documents, and tools. 10
The SEI study identified 99 data points on cost, schedule, productivity, quality, satisfaction, and
ROI gains from 25 organizations as reported by CMMI®-related literature from SEI conferences.
It’s important to note that CMMI® data are optimistic and often come from CMMI® proponents,
rather than scholarly research studies such as experiments, surveys, or other scientific methods.
Oftentimes, the percentages are only relative proportions and do not state the actual costs and
benefits (e.g., large CMMI® initiatives cost millions of dollars and oftentimes do not succeed).
Some of these data came from mixing and matching Traditional Methods such as Inspections,
PSPsm, TSPsm, Six Sigma, and others to gain synergy not possible within a CMMI® environment.
Nonetheless, these data represent a major milestone in the research on Traditional Methods for
software process improvement, software development, and information systems (IS) research.
Two similar studies on the costs and benefits of SW-CMM© were gathered by the Data and
Analysis Center for Software (DACS) 11 and software development researchers in Israel. 12

Table 1. Agile Methods Costs and Benefits

No. Category Low Median High Points
1. Cost 10% 26% 70% 9
2. Schedule 11% 71% 700% 19
3. Productivity 14% 122% 712% 27
4. Quality 10% 70% 1,000% 53
5. Satisfaction 70% 70% 70% 1
6. ROI 240% 2,633% 8,852% 29

Table 2. Traditional Methods Costs and Benefits

No. Category Low Median High Points
1. Cost 3% 20% 87% 21
2. Schedule 2% 37% 90% 19
3. Productivity 9% 62% 255% 17
4. Quality 7% 50% 132% 20
5. Satisfaction -4% 14% 55% 6
6. ROI 200% 470% 2,770% 16

Using the SEI cost and benefit summary as a framework, cost, schedule, productivity, quality,
satisfaction, and ROI data were gathered from over 300 scholarly articles about Agile Methods.
In Table 1 and Table 2, the category represents the benefits of Agile and Traditional Methods,
while the low, median, and high represent the range of reported benefits within each category.
This was a laborious process, because relevant articles on Agile Methods had to be identified and
categorized, and then cost and benefit data had to be extracted and normalized for comparison.
The original goals were limited in scope and consisted of gathering a small amount of data in
order to gain an appreciation for the range of costs and benefits possible with Agile Methods.
However, this quickly blossomed into a two-month long effort due to the number of studies on
Agile Methods, the amount of data, and the process of data cleansing for comparative analysis.
In the end, cost, schedule, productivity, quality, and satisfaction data from 69 scholarly studies
were utilized, consisting of 36 experiments, 25 cases, 6 surveys, and 2 simulations (see Table 3).
On average, studies of Agile Methods reported 29% better cost, 91% better schedule, 97% better
productivity, 50% better quality, 400% better satisfaction, and 470% better ROI than CMMI®.
The complete results were compiled into an ROI spreadsheet model on the costs and benefits of
Agile Methods and represent one of the largest collections of data on Agile Methods to-date. 13
Several good studies of Pair Programming and Test Driven Development also served as an
inspiration for this study as well as sources of additional cost and benefit data on Agile Methods.

Page - 4 -

Table 3. Agile Methods Costs and Benefits (identified from an analysis of over 300 studies)
No. Author(s) Year Tech Cost Sched Prod Quality Satis Method N
1. Abrahamsson 2003 XP 88% Case 4
2. Abrahamsson 2007 General 70% 700% 250% Case 1,800
3. Al-Kilidar et al. 2005 PP 13% Exp 121
4. Arisholm et al. 2007 PP 11% 23% Exp 295
5. Back, Hirkman, & Milovanov 2004 XP 87% Exp 8
6. Bhat & Nagappan 2006 TDD 71% Case 12
7. Bipp, Lepper, & Schmedding 2008 PP 62% Exp 95
8. Canfora et al. 2006 PP 14% 20% Exp 70
9. Canfora et al. 2007 PP 39% 39% Exp 18

10. Cohn 2008 Scrum 405% 71% Case 7
11. Dalcher, Benediktsson, & Thorbergsson 2005 XP 21% 384% Exp 55
12. Damm & Lundberg 2006 TDD 56% Case 100
13. Drobka, Noftz, & Raghu 2004 XP 289% 63% Case 29
14. Erdogmus, Morisio, & Torchiano 2005 TDD 28% Exp 24
15. Fitzgerald, Hartnett, & Conboy 2006 Scrum 700% Case 45
16. Flohr & Schneider 2006 TDD 27% Exp 18
17. George 2002 TDD 16% Exp 138
18. George & Williams 2003 TDD 18% Exp 24
19. George & Williams 2004 TDD 18% Exp 24
20. Heiberg et al. 2003 PP 16% Exp 100
21. Huang & Holcombe 2008 TDD 172% Exp 274
22. Hulkko & Abrahamsson 2005 PP 18% 46% Case 18
23. Ilieva, Ivanov, & Stefanova 2004 XP 12% 41% 13% Exp 8
24. Janzen & Saiedian 2008 TDD 34% Exp 64
25. Jensen 2003 PP 127% 1,000% Case 10
26. Jones 2008 Scrum 74% Case 5
27. Kaufmann & Janzen 2003 TDD 50% 50% Exp 8
28. Kuppuswami et al. 2003 XP 28% Sim n/a
29. Layman 2004 XP 61% 48% Case 21
30. Lui & Chan 2004 PP 24% Exp 3
31. Lui & Chan 2006 PP 23% Exp 40
32. Lui, Chan, & Nosek 2008 PP 70% Exp 15
33. Madeyski 2006 PP 14% Exp 188
34. Madeyski & Szala 2007 TDD 18% 45% Case 1
35. Mann 2004 TDD 81% Case 7
36. Maurer & Martel 2002 XP 66% Case 9
37. Maximilien & Williams 2003 TDD 50% Case 9
38. McDowell et al. 2003 PP 27% Exp 555
39. McDowell et al. 2006 PP 27% Case 486
40. Melis et al. 2006 TDD 36% Case 4
41. Mendes, Al-Fakhri, & Luxton-Reilly 2005 PP 10% Exp 300
42. Molokken-Ostvold & Jorgensen 2005 General 12% Survey 42
43. Muller 2005 PP 29% Exp 38
44. Muller 2006 PP 29% 11% Exp 18
45. Muller 2007 PP 50% Exp 21
46. Muller & Padberg 2003 XP 20% Sim n/a
47. Nawrocki & Wojciechowski 2001 PP 25% 15% Exp 21
48. Nosek 1998 PP 29% 36% Exp 15
49. Pandey et al. 2003 PP 40% 20% 40% Exp 10
50. Phongpaibul & Boehm 2006 PP 24% 34% Exp 104
51. Reifer 2003 XP 10% 53% 20% Survey 18
52. Rico 2007 General 51% 65% 56% 63% 70% Survey 122
53. Saff & Ernst 2004 TDD 16% Exp 39
54. Sanchez, Williams, & Maximilien 2007 TDD 40% Case 17
55. Schatz & Abdelshafi 2005 Scrum 29% 30% Case 90
56. Schatz & Abdelshafi 2005 TDD 75% Case 90
57. Sutherland 2007 Scrum 712% Case 5
58. Talby et al. 2006 TDD 90% Case 60
59. Van Schooenderwoert 2006 XP 192% 89% Case 4
60. Vanhanen & Lassenius 2005 PP 42% Exp 20
61. Version One 2006 General 10% 18% 17% 17% Survey 722
62. Version One 2007 General 11% 16% 17% 17% Survey 1,681
63. Williams 2001 PP 47% 15% Exp 41
64. Williams et al. 2003 PP 16% Exp 575
65. Williams, Maximilien, & Vouk 2003 TDD 40% Case 14
66. Wilson, Hoskin, & Nosek 1993 PP 38% Exp 34
67. Wolf & Roock 2008 General 72% 78% 74% Survey 200
68. Xu & Rajlich 2006 PP 48% 201% 21% Exp 12
69. Ynchausti 2001 TDD 153% Case 5

Page - 5 -

ROI Metrics and Models

A significant concept or principle within Agile Methods is the notion of creating business value,
which often means delivering working software through the process of iterative development.
This is clearly evident by analysis of the first principle of the Agile Manifesto, “Our highest
priority is to satisfy the customer through early and continuous delivery of valuable software.”
This stands in opposition to the central concept or principle within some Traditional Methods in
which creating processes and documentation is considered the main measure of business value. 14
Within some Traditional Methods, writing documentation is considered paramount to the quality,
maintainability, reliability, and safety of mission critical systems such as aviation electronics. 15
While Agile Methods use programming for creating business value, some equate them with
hacking, ill-conceived prototypes, and coding without documented requirements and design. 16
The advent of Agile Methods was a return to fundamentals—That is, software craftsmanship
versus documentation, which has been a mantra of the commercial software industry for years. 17
Traditional Methods are usually used on extraordinarily large systems, in which public funds are
necessary to pay for Acquisition Category I programs (e.g., spacecraft, aircraft, missiles, etc.).

Table 4. ROI Metrics (showing simplicity of return on investment formulas and their order of application)

Metric Definition Formula
Costs

(sum of costs) Total amount of money spent on Agile Methods ∑
=

n

i
iCost

1

Benefits
(sum of benefits) Total amount of money gained from Agile Methods ∑

=

n

i
iBenefit

1

B/CR
(benefit to cost ratio) Ratio of Agile Methods benefits to costs

Costs
Benefits

ROI%
(return on investment) Ratio of adjusted Agile Methods benefits to costs %100×

−
Costs

CostsBenefits

NPV
(net present value) Discounted cash flows of Agile Methods ∑

=

−
+

Years

i
Years

i Costs
RateDiscount

Benefits
1

0)1(

BEP
(breakeven point) Point when benefits exceed costs of Agile Methods Months

NPV
Costs 60×

ROA
(real options analysis) Value realized from strategic delay due to risk () () YearsRateeCostsdNBenefitsdN ×−××−× 21

d1 = [ln(Benefits ÷ Costs) + (Rate + 0.5 × Risk2) × Years] ÷ Risk × √ Years, d2 = d1 − Risk × √ Years

However, Agile Methods elevate business value beyond just the activities of creating working
software at regular intervals—Agile Methods go on to define business value in terms of ROI. 18
This is clearly evident within Agile Methods such as Extreme Programming and Scrum, where
user stories (requirements) are “prioritized” based on business value (e.g., ROI, NPV, etc.). 19
With this second definition of business value in-mind, the most often cited measure of business
value for prioritizing requirements is ROI, or any closely related family of business metrics. 20
ROI metrics are used to evaluate the economic value of one or more investments in information
technology and are often expressed as simple ratios of benefits to cost, less the costs of course. 21
Seven metrics were used for valuation of Agile Methods: Costs, Benefits, Benefit to Cost Ratio,
Return on Investment%, Net Present Value, Break Even Point, and Real Options (see Table 4). 22
ROI metrics are slight variations created over the last 100 years (e.g., benefits relative to costs)
and each is good for measuring the business value of Agile Methods with increasing accuracy.

Page - 6 -

Agile Methods Costs

As shown in Table 4, the first basic input necessary to estimate the ROI of Agile Methods is cost,
so it was necessary to identify studies of Agile Methods with cost measures for estimating ROI.
Therefore, software productivity and quality measurement data such as lines or code or function
points and quality measures such as defect density had to be identified in order to estimate ROI.
This data could then serve as the basis for establishing the empirical cost estimating relationships
necessary to design top down parametric models for estimating the costs of using Agile Methods.

Table 5. Agile Methods Productivity and Quality Data (identified from an analysis of over 300 studies)

No. Author(s) Year Tech LOC/Hour Def/KLOC Method N
1. Abrahamsson 2003 XP 19.2550 2.1450 Case 4
2. Abrahamsson & Koskela 2004 XP 16.9000 1.4300 Case 4
3. Back, Hirkman, & Milovanov 2004 XP 8.0000 0.7000 Exp 8
4. Bowers et al. 2002 XP 18.1731 0.0325 Case ???
5. Dalcher, Benediktsson, & Thorbergsson 2005 XP 14.8667 Exp 55
6. Hashmi & Baik 2008 XP 16.8420 Case 19
7. Ilieva, Ivanov, & Stefanova 2004 XP 20.2030 0.0032 Exp 8
8. Layman 2004 XP 9.1154 0.6250 Case 21
9. Layman et al. 2006 XP 13.3846 1.6200 Case 8

10. Manzo 2002 XP 43.0000 0.5000 Case 17
11. Maurer & Martel 2002 XP 17.0000 Case 9
12. Van Schooenderwoert 2006 XP 3.5000 0.1700 Case 4
13. Williams, Layman, & Krebs 2004 XP 9.8077 0.2400 Case 19
14. Huang & Holcombe 2008 TDD 12.3800 Exp 274
15. Madeyski & Szala 2007 TDD 46.1800 Case 1
16. Maximilien & Williams 2003 TDD 3.7000 Case 9
17. Williams, Maximilien, & Vouk 2003 TDD 0.6100 Case 14
18. Baheti, Gehringer, & Stotts 2002 PP 16.6370 Exp 132
19. Erdogmus & Williams 2003 PP 43.4780 5.8500 Case 41
20. Hulkko & Abrahamsson 2005 PP 15.6667 4.1500 Case 18
21. Nawrocki & Wojciechowski 2001 PP 49.2500 Exp 21
22. Pandey et al. 2003 PP 22.4462 2.3900 Exp 10
23. Vanhanen & Korpi 2007 PP 15.4667 0.5500 Case 4
24. Vanhanen & Lassenius 2005 PP 17.8403 0.3250 Exp 20
25. Xu & Rajlich 2006 PP 86.4502 0.8651 Exp 12
26. Cohn 2008 Scrum 5.9050 2.9000 Case 7
27. Jones 2008 Scrum 5.7400 8.5000 Case 5
28. Schatz & Abdelshafi 2005 Scrum 0.4350 Case 90
29. Sutherland 2006 Scrum 4.6858 Case 5

Data from Table 5 were averaged to establish the cost estimating relationships to design top
down parametric models used to estimate the ROI of Agile Methods (see Table 6 and Table 7).
An average programming productivity measurement was taken of the 26 data points in Table 6
and was used to construct an empirical cost model called ‘Agile Methods’ for the entire data set.
The cost and quality models in Table 6 and Table 7 were then be used to estimate the software
development and maintenance costs of Agile Methods along with their benefits (hence, ROI).
The method for estimating the ROI of Agile Methods will be explained in the next section.

Table 6. Agile Methods Cost Models
No. Tech Low Median High Pts Cost Model
1. XP 03.5000 16.1575 43.0000 13 LOC ÷ 16.1575
2. TDD 12.3800 29.2800 46.1800 2 LOC ÷ 29.2800
3. PP 15.4667 33.4044 86.4502 8 LOC ÷ 33.4044
4. Scrum 04.6858 05.4436 05.9050 3 LOC ÷ 05.4436
5. Agile 03.5000 21.2374 86.4502 26 LOC ÷ 21.2374

Table 7. Agile Methods Quality Models
No. Tech Low Median High Pts Quality Model
1. XP 0.0032 0.7466 2.1450 10 0.7466 × KLOC × 100
2. TDD 0.6100 2.1550 3.7000 2 2.1550 × KLOC × 100
3. PP 0.3250 2.3550 5.8500 6 2.3550 × KLOC × 100
4. Scrum 0.4350 3.9450 8.5000 3 3.9450 × KLOC × 100
5. Agile 0.0032 1.7972 8.5000 21 1.7972 × KLOC × 100

Page - 7 -

Agile Methods Benefits

There are two ways to increase business value or ROI: (a) increasing volume and revenue while
maintaining current costs or (b) reducing costs while maintaining current volume and revenue. 23
This study uses the latter (e.g., reduce costs while maintaining volume and revenue), which is
known as cost of quality (CoQ), total cost of ownership (TCO), and total lifecycle cost (TLC). 24
Unless previously stated, we can’t predict the business value or ROI of an Agile Methods study;
However, we can predict costs of software development and maintenance given the right data.
This is especially true for software maintenance costs, which can be predicted using software
quality measurements from the software development phase such as defect density (Def/KLOC).
Together, the software development and maintenance costs constitute the CoQ, TCO, and TLC;
That is, cradle-to-grave costs of software analysis, design, development, test, and maintenance.

Table 8. Total Lifecycle Costs

No. Tech Total Lifecycle Cost Model Costs
1. XP (10,000 ÷ 16.1575 + 0.7466 × 10 × 100) × 100 $136,548
2. TDD (10,000 ÷ 29.2800 + 2.1550 × 10 × 100) × 100 $249,653
3. PP (10,000 ÷ 33.4044 + 2.3550 × 10 × 100) × 100 $265,437
4. Scrum (10,000 ÷ 05.4436 + 3.9450 × 10 × 100) × 100 $578,202
5. Agile (10,000 ÷ 21.2374 + 1.7972 × 10 × 100) × 100 $226,805

In order to estimate total lifecycle costs, both software development and maintenance costs have
to be estimated and then added together using cost and quality models from Table 6 and Table 7.
First, software development costs are estimated using the cost models from Table 6 and then the
software maintenance costs are estimated utilizing the quality models from Table 7 (see Table 8).
A baseline size of 10,000 lines of code is used for software development and a baseline effort of
100 hours is used for software maintenance (along with a conversion rate of $100 U.S. dollars).
The software development cost model is a simple linear model based on productivity measures,
but maintenance cost is based on 100 hours of effort for each defect which escapes development.
This methodology assumes a ratio of 1:10:100 ratio for pre-test, test, and maintenance effort. 25

Table 9. Total Lifecycle Benefits

No. Tech Total Lifecycle Benefit Model Benefits
1. XP (10,000 ×10.51 – 6,666.67 × 9) ×100 – TLC $4,373,449
2. TDD (10,000 ×10.51 – 6,666.67 × 9) ×100 – TLC $4,260,344
3. PP (10,000 ×10.51 – 6,666.67 × 9) ×100 – TLC $4,244,560
4. Scrum (10,000 ×10.51 – 6,666.67 × 9) ×100 – TLC $3,931,795
5. Agile (10,000 ×10.51 – 6,666.67 × 9) ×100 – TLC $4,283,192

In order to estimate total lifecycle benefits, the total lifecycle costs of using Agile Methods were
subtracted from the estimated total lifecycle costs of Traditional Methods (as shown in Table 9).
Some assumptions were that the total lifecycle costs of Traditional Methods exceeded the total
lifecycle costs of Agile Methods (and Agile Methods don’t exceed costs of Traditional Methods).
The major terms of the benefit models represent the total lifecycle costs of a 10% defect rate and
a 0.51 LOC/hour productivity rate (less the benefits of finding 66.67% of the defects by testing).
The TLC methodology used here to estimate the costs, benefits, and ROI has been outlined in a
number of publications 21 and the complete results are available in an ROI spreadsheet model. 13

Page - 8 -

Agile Methods Return on Investment

The total lifecycle cost and benefit models for each of the Agile Methods from Table 8 and Table
9 were combined with the ROI metrics from Table 4 to estimate the ROI data shown in Table 10.
Extreme Programming had the lowest overall total lifecycle cost at $136,548, followed by Test
Driven Development, Pair Programming, and Scrum around $249,653, $265,437, and $578,202.
As a result, Extreme Programming had the highest return on investment at 3,103%, followed by
Test Driven Development, Pair Programming, and Scrum at around 1,607%, 1,499%, and 580%.
Pair Programming had the highest overall average productivity at 33 LOC/Hour, followed by
Test Driven Development, Extreme Programming, and Scrum around 29, 16, and 5 LOC/Hour.
Extreme Programming had the highest overall quality at 0.8 Defects/KLOC, followed by Test
Driven Development, Pair Programming, and Scrum at around 2.2, 2.4, and 4 Defects/KLOC.
Extreme Programming had half the productivity of Pair Programming; however it had six times
better quality than all the other methods combined leading to lower total costs and higher ROI.

Table 10. Agile Methods Return on Investment (estimated from productivity and quality data)
No. Tech Prod. Quality Costs Benefits B/CR ROI% NPV BEP Cost/Per Risk ROA
1. XP 16.1575 0.7466 $136,548 $4,373,449 32:1 3,103% $3,650,401 $4,263 $34,137 21.23% $4,267,105
2. Agile 21.2374 1.7972 $226,805 $4,283,192 19:1 1,788% $3,481,992 $12,010 $56,701 62.27% $4,110,308
3. TDD 29.2800 2.1550 $249,653 $4,260,344 17:1 1,607% $3,439,359 $14,629 $62,413 67.95% $4,074,506
4. PP 33.4044 2.3550 $265,437 $4,244,560 16:1 1,499% $3,409,908 $16,599 $66,359 71.30% $4,050,918
5. Scrum 5.4436 3.9450 $578,202 $3,931,795 7:1 580% $2,826,320 $85,029 $144,551 100.00% $3,660,805

The ROI data for Agile Methods in Table 10 were combined with prior ROI data for Traditional
Methods 22 in order to compare the ROI of Agile vs. Traditional Methods (as shown in Table 11).
Some Traditional Methods were expected to top the list in this analysis (which they did), because
the ROI methodology used in this study rewards methods with high quality (low defect density).
Most Agile Methods were expected to rank better than expensive Traditional Methods (which
they did), because the costs of implementing expensive Traditional Methods tends to be high.
Although, Extreme Programming was expected to top the list of Agile Methods (which it did),
Extreme Programming ranked third ahead some of the industry’s premier Traditional Methods.
Extreme Programming ranked almost second on the strength of quality rather than productivity,
which was half its nearest competitors, because total lifecycle cost rewards quality handsomely.
The best traditional methods remove defects before testing to minimize total lifecycle costs.

Table 11. Agile vs. Traditional Methods Return on Investment (estimated from productivity and quality data)

No. Method Costs Benefits B/CR ROI% NPV BEP Cost/Per Risk ROA
1. PSPsm $105,600 $4,469,997 42:1 4,133% $3,764,950 $945 $26,400 6.44% $4,387,756
2. Inspection $82,073 $2,767,464 34:1 3,272% $2,314,261 $51,677 $20,518 26.78% $2,703,545
3. XP $136,548 $4,373,449 32:1 3,103% $3,650,401 $4,263 $34,137 30.78% $4,267,105
4. TSPsm $148,400 $4,341,496 29:1 2,826% $3,610,882 $5,760 $37,100 37.33% $4,225,923
5. Agile $226,805 $4,283,192 19:1 1,788% $3,481,992 $12,010 $56,701 61.83% $4,110,118
6. TDD $249,653 $4,260,344 17:1 1,607% $3,439,359 $14,629 $62,413 66.13% $4,073,167
7. PP $265,437 $4,244,560 16:1 1,499% $3,409,908 $16,599 $66,359 68.67% $4,048,404
8. SW-CMM® $311,433 $3,023,064 10:1 871% $2,306,224 $153,182 $77,858 83.51% $2,828,802
9. Scrum $578,202 $3,931,795 7:1 580% $2,826,320 $85,029 $144,551 90.38% $3,622,271
10. ISO 9001 $173,000 $569,841 3:1 229% $320,423 $1,196,206 $43,250 98.66% $503,345
11. CMMI® $1,108,233 $3,023,064 3:1 173% $1,509,424 $545,099 $277,058 100.00% $2,633,052

Page - 9 -

Conclusion

The main purpose of this article was to identify, analyze, and summarize the costs and benefits of
Agile Methods found in the best possible literature (e.g., experiments, surveys, and case studies).
Not only did we find 69 studies with cost and benefit data, but we found more, better quality
studies with an average of 200% better performance than big and expensive Traditional Methods.
We also found 29 studies of Agile Methods with the productivity and quality data necessary to
estimate ROI using metrics that would enable the comparison of Agile vs. Traditional Methods.
This analysis showed that Agile Methods are almost as good as the best Traditional Methods
under the light of total lifecycle cost analysis, which tends to reward methods with high quality.

• Agile Methods weren’t born yesterday. Agile Methods are based on early customer

involvement, iterative development, self organizing teams, and adaptability to change, which
originated from agile, new product development approaches dating back to the 19th century.

• Agile Methods scale up to large problems. Agile, new product development methods
have been used for many large-scale, complex research and development projects such as
Lockheed’s SR-71, NASA’s Apollo, and the Jet Propulsion Laboratory’s deep space probes.

• Agile Methods may not be in use by very large organizations. Agile Methods are used
by 70% of small to medium-sized projects; however, larger projects use Traditional Methods,
so the relevance of Agile Methods to large, complex projects needs to be convincingly made.

• Agile Methods can learn something from traditional methods. Agile Methods should
apply traditional quality and reliability theory, which holds that defects are less expensive to
eliminate early in the lifecycle and late defect removal has a negative, multiplicative effect.

• Agile Methods hybrids are the latest trends. Agile Methods are being combined with
one another to gain synergies not possible with any one approach, such as XP and Scrum.
Agile and Traditional Methods are also being combined to tap into one another’s capabilities.

• Agile Methods require non-traditional measures. Traditional Methods were optimized
for productivity and quality, which rewards them using total lifecycle cost analysis; but Agile
Methods should focus on project success and customer satisfaction where they shine best.

• Agile Methods lend themselves to advanced economic models. Agile Methods lend
themselves to valuation methods such as real options; therefore researchers should focus on
real options as a way of explaining the superiority of Agile Methods on complex projects.

• Agile Methods adoption involves traditional critical success factors. Executive
commitment, resources, leadership, strategy, culture, incentives, training, tools, execution,
consulting, measurement, and improvement are vital to the adoption of Agile Methods.

• Agile Methods adoption also involves non-traditional critical success factors. Lest
we forget the Agile Manifesto, emphasis on individuals and interactions, working software,
customer collaboration, and responding to change are non-traditional critical success factors.

In conclusion, not all Agile and Traditional Methods are created equal, there are pitfalls for using
any method with a low ROI, and there are lessons to be learned from the best software methods.
However, it may not be fair to compare methods optimized for productivity and quality to those
optimized for speed, satisfaction, project success, and optimal ROI in the face of increasing risk.
It’s important to note that the power of Agile Methods is not in minimizing lifecycle costs, but
maximizing business value through successful delivery of working software in the face of risk.
Agile Methods are a unique paradigm, which cannot be easily grasped through traditional means.

Page - 10 -

References

1. Rico, D. F. (2007). Effects of agile methods on website quality for electronic commerce. Retrieved

August 10, 2008, from http://davidfrico.com/rico07q.pdf
2. Rico, D. F., Sayani, H. H., & Field, R. F. (2008). History of computers, electronic commerce, and

agile methods. In M. V. Zelkowitz (Ed.), Advances in computers: Emerging technologies, Vol. 73.
San Diego, CA: Elsevier.

3. Thomke, S. (2003). Experimentation matters: Unlocking the potential of new technologies for
innovation. Boston, MA: Harvard Business School Press.

4. Rico, D. F. (2008). Effects of agile methods on website quality for electronic commerce. Proceedings
of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008), Waikaloa,
Big Island, Hawaii.

5. Highsmith, J. A. (2002). Agile software development ecosystems. Boston, MA: Addison Wesley.
6. Johnson, M. (2002). Agile methodologies: Survey results. Victoria, Australia: Shine Technologies.
7. Ambler, S. W. (2006). Agile adoption rate survey: March 2006. Retrieved September 17, 2006, from

http://www.ambysoft.com/downloads/surveys/AgileAdoptionRates.ppt
8. Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising agile methods to software practices at

intel shannon. European Journal of Information Systems, 15(2), 200-213.
9. SEI. (2005). SEI performance results. Retrieved August 10, 2008, from

http://www.sei.cmu.edu/cmmi/2005results.html
10. Agile Manifesto. (2001). Manifesto for agile software development. Retrieved November 29, 2006,

from http://www.agilemanifesto.org
11. Rico, D. F. (2000). Using cost benefit analyses to develop software process improvement (SPI)

strategies (Contract Number SP0700-98-D-4000). Rome, NY: Air Force Research Laboratory—
Information Directorate (AFRL/IF), Data and Analysis Center for Software (DACS).

12. Galin, D., & Avrahami, M. (2006). Are CMM program investments beneficial? Analyzing past
studies. IEEE Software, 23(6), 81-87.

13. Rico, D. F. (2008). What is the ROI of agile vs. traditional methods? An analysis of extreme
programming, test-driven development, pair programming, and scrum (using real options). Retrieved
June 28, 2008, from http://davidfrico.com/agile-benefits.xls

14. International Standards Organization. (2008). Systems and software engineering: Software life cycle
processes (ISO/IEC 12207). Geneva, Switzerland: Author.

15. Radio Technical Commission for Aeronautics. (1999). Software considerations in airborne systems
and equipment certification (DO-178B). Washington, DC: Author.

16. McCormick, M. (2001). Programming extremism. Communications of the ACM, 44(6), 109-111.
17. McBreen, P. (2001). Software craftsmanship: The new imperative. Boston, MA: Addison-Wesley.
18. Agile Project Leadership Network. (2008). Declaration of interdependence. Retrieved August 10,

2008 from, http://www.pmdoi.org
19. Beck, K., & Fowler, M. (2001). Planning extreme programming. Upper Saddle River, NJ: Addison-

Wesley.
20. Schwaber, K. (2004). Agile project management with scrum. Redmond, WA: Microsoft Press.
21. Rico, D. F. (2004). ROI of software process improvement: Metrics for project managers and software

engineers. Boca Raton, FL: J. Ross Publishing.
22. Rico, D. F. (2007). Practical metrics and models for ROI with real options. Retrieved November 28,

2007, from http://davidfrico.com/rico07b.pdf
23. Garrison, R. H., & Noreen, E. W. (1997). Managerial accounting. Boston, MA: McGraw-Hill.
24. Campanella, J. (1999). Principles of quality costs: Principles, implementation, and use. Milwaukee,

WI: Quality Press.
25. McGibbon, T., Ferens, D., & Vienneau, R. L. (2007). A business case for software process

improvement (2007 update): Measuring the return on investment from software engineering and
management (Contract Number SP0700-98-D-4000). Griffiss AFB, NY: AFRL/IFT, DACS.

